Constrained Relational Topic Models

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic Relational Topic Models

This paper presents the Dynamic Relational Topic Model, a new dynamic topic model that incorporates both document text and relationships for discovering the underlying topics in document collections and their evolution over time. We derive an approximate variational inference algorithm for our model and demonstrate its effectiveness over previous approaches by analyzing papers in Computer Scien...

متن کامل

Generalized Relational Topic Models with Data Augmentatio

Relational topic models have shown promise on analyzing document network structures and discovering latent topic representations. This paper presents three extensions: 1) unlike the common link likelihood with a diagonal weight matrix that allows the-same-topic interactions only, we generalize it to use a full weight matrix that captures all pairwise topic interactions and is applicable to asym...

متن کامل

Generalized Relational Topic Models with Data Augmentation

Relational topic models have shown promise on analyzing document network structures and discovering latent topic representations. This paper presents three extensions: 1) unlike the common link likelihood with a diagonal weight matrix that allows the-same-topic interactions only, we generalize it to use a full weight matrix that captures all pairwise topic interactions and is applicable to asym...

متن کامل

Relational Topic Models for Document Networks

We develop the relational topic model (RTM), a model of documents and the links between them. For each pair of documents, the RTM models their link as a binary random variable that is conditioned on their contents. The model can be used to summarize a network of documents, predict links between them, and predict words within them. We derive efficient inference and learning algorithms based on v...

متن کامل

Sparse Relational Topic Models for Document Networks

Learning latent representations is playing a pivotal role in machine learning and many application areas. Previous work on the relational topic model (RTM) has shown promise on learning latent topical representations for describing relational document networks and predicting pairwise links. However under a probabilistic formulation with normalization constraints, RTM could be ineffective in con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Information Sciences

سال: 2020

ISSN: 0020-0255

DOI: 10.1016/j.ins.2019.09.039